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Synopsis

Calculations of electronic stopping for heavy particles with low charge number are per­
formed down to quite low energies, e. g. for protons down to ~ 100 keV. The treatment is a re­
finement of a procedure suggested by Lindhard and Scharff. This procedure makes extensive 
use of statistical models of the atom.

Stopping as a function of energy is determined by the /-value of the target material and 
the energy dependent “shell correction’’. As discussed, the shortcomings of the present statistical 
treatment should show up mainly in the /-values. In fact, the shell corrections obtained appear 
to be comparatively accurate, especially in view of the fact that previous estimates have been 
made by fitting parameters in semi-empirical formulas.

There is also a discussion of the possibility of determining /-values from theoretical shell 
correction curves and experimental stopping powers at very low energies.
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§ 1. Introduction

v I "'he present paper will be concerned with electronic stopping of a heavy 
1 particle of low charge penetrating a substance with randomly distributed 
atoms. In such a situation quantal perturbation theory should be applicable 
down to quite low energies—e.g. for protons, which will be our standard 
projectiles, down to ~ 100 keV (cf. p. 10).

Although deflections in the screened atomic fields are of major importance 
in determining the scattering of the incoming particle, it is well known that 
the contribution to total stopping from these nuclear collisions can be 
neglected at the energies mentioned above1).

§ 2. Review of Theory and Definition of Model

For electronic stopping one finds in a perturbation treatment that the 
specific energy loss, (- dE/dx)e, suffered by a heavy incoming particle with 
charge Z^e, will be given by

4^Z?e4(- dE/dx)e = -----X2 N-Z2L(v,Z2), (1)
mu

m, u and N being, respectively, the electron mass, the velocity of particle 1 
and the density of target atoms with atomic number Z2. The dimensionless 
function L(p, Z2) is the one to be evaluated. The use of perturbation theory 
introduces the important simplification that the incoming particle appears 
in formula (1) only through the factor (Zxe)2. Hence, the problem of eval­
uating the electronic stopping power is reduced to a treatment of the target 
material.

For u much larger than the velocities of the electrons in the stopping 
material L(p, Z2) is given by Bethe’s expression 

L(n, Z2) 2 fn log
2nw2

+ log

1*
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the summation being performed over all possible transition frequencies con 
with corresponding dipole oscillator strengths fn (2 fn = !)• Relativistic terms 
enter only as the fourth and higher powers of v/c and are omitted in the 
following.

Before entering into actual calculations of L(u, Z2), let us briefly consider 
the possibility of applying similarity of the kind characteristic of the Thomas- 
Fermi description of the atom. The line of argument is the one given in 
refs. 2 and 3 a.

In a dynamic Thomas-Fermi model fn should only be a function of the 
one variable co/Z2, the frequency scale being proportional to Z2. Moreover, 
denoting the dipole oscillator strength density by g(co/Z2)*  we get from (2) 
the asymptotic formula

(6)

In a real atom, the distribution of oscillator strength differs somewhat from 
that of a Thomas-Fermi model. At intermediate values of co/Z2 the departure 
from the smoothly decreasing function c/(co/Z2) should reflect the presence 
of various electronic shells and thus be of an oscillating nature. However, 
a more systematic deviation is expected below a frequency co ~ co^(hcoÄ = 
nwg/2), a>R giving e.g. the order of magnitude of both the ionization 
frequency of an inert gas and the plasma frequency of the valence electrons 
in a metal. This means that the integral representing log/0 will receive only

* An evaluation of from a hydrodynamical type of Thomas-Fermi model was sug­
gested by Bloch in 19334> and has recently been carried through by Ball5*.

L(p,Z2) (3)

Here, L only depends on v and Z2 in the combination f2/Z2. Thus, if we 
define a new energy measure x by6- 2>

with /0 given by

L can be expressed as

log/0

(4)

(5) 
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very small contributions below a value (co/Z2)cut_off. the whole, (co/Z2)C}lt.oit 
is proportional to Z2X, but significant individual fluctuations exist. Hence, 
g(a>lZ2) being a decreasing function, departures from the Thomas-Fermi 
prediction for the /0-value should arise mainly because of deviations of the 
oscillator strength distribution from c/(co/Z2) at the low frequency end of 
the spectrum. This observation seems essential not only for the calculation 
of 70-values, but also for any attempt to continue the evaluation of L(v, Z2) 
down to values of v where the asymptotic formula (2) does not apply. In 
fact, the contribution to L from the low frequencies must remain of order 
of 2/n log(2nw2/ficow), and thus the effect being responsible for the most 
pronounced departure from a similarity description at high energies should 
persist down to quite low energies.

One way of handling the many body problem involved in calculating 
L(u, Z2) for all values of v and Z2 would be to solve a system of self-con­
sistent equations for the electromagnetic field inside the target material. How­
ever, a main difficulty of such a (microscopic) dielectric treatment of an 
atomic system arises from the fact that the electron density varies in space. 
In order to avoid this difficulty, Lindiiard and Winther7) considered the 
idealized case of a free electron gas, which, as discussed in the following, 
provides a good starting-point for more realistic situations. Suppose that a 
Fermi gas is disturbed by a charge density Q0(r, t) and that this gives rise 
to a potential <P(r,t). If the disturbance can be considered as a perturbation, 
a linear description can be applied, and all the information about the stop­
ping material, necessary to calculate L(o, Z2), is contained in the longitudinal 

dielectric constant e connecting the Fourier components Q0(k, co) and 
0(/c, co) of and 0. In fact, defining e\k, co) by the equation

/c2ez(Å', co)0(/c, oj) = 47tQ0(k, co), (7)
one has7>

i “rdk*?  I 1 I
L = —- — co{-r------ - - 1 c/co, (8)

TCCOfl J k J I El(k, co)
u 0 - kv v 7 ‘

co0 and i being, respectively, the plasma frequency ï/4ne2N• Z2/m and the 
imaginary unit. (Because of isotropy in coordinate space, el does not de- 

pend on the direction of k.) From the calculations in ref. 7 several important 
results have emerged, especially concerning the question of the effect on 
the oscillator strength distribution of the polarizability of the medium.
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Lindhard and Scharff6’ 2) argued that even if a dielectric calcula­
tion could not be carried through for the atomic case, the picture of a 
polarizable electron gas should still be useful. One could try to average L 
for a gas of constant density over the electron cloud of the atom, thus making 
a statistical approach to the many body problem. However, some way or 
other, the effect of the electrons not beeing free, should be introduced in the 
expression for the stopping contribution from the various parts of the electron 
cloud.

From such considerations it was suggested that

4%r2e(r) log ^«'^2Mlcyo(rmln) = 1 (9)
min

could be expected to give a fair approximation even down to rather small 
values of u. Here, @(r) is the electron density in an atom of the target material, 
and ca0(r) the corresponding local plasma frequency y 4ne2ç(r)lm. For @(r) 
the densities found in for instance a Thomas-Fermi or a Hartree description 
could be used. Qualitative arguments were presented6) to show that the 
binding forces acting on the electrons probably could be approximately 
accounted for by the constant y, appearing in (9). y was expected to be of 
order of | 2. The values of Zo, calculated from (5) and (9), are seen to be­
come proportional to y, and y = | 2 gives fair agreement with experimentally 
determined mean excitation energies2).

In the Lindhard-Scharff model a distinction was made between “outer” 
electrons (2nw2/| 2/ïco0(r) >1), the contribution of which was calculated 
as if at rest, and “inner” electrons (2/np2/|/27ico0(r) < 1) that were considered 
to give no stopping at all. With a cut-off of this kind, L remains a function 
of x only, when the Thomas-Fermi expression for g(r) is used. If we compare 
with (3), an essential aspect of (9) can be expressed in the following way: 
L is supposed to be obtainable as an average of a function å(co0,p) weighted 
with a dipole oscillator strength density for which an ansatz has been made.

/- -2 d1'

The frequency | 2co0 should correspond to the density - 4nr q(t) —

The results presented in ref. 2 were so promising, even down to energies 
around maximum in stopping cross section, that it might be profitable to 
repeat the calculations with the same ansatz for the oscillator strength 
distribution, but with a relined expression for L(r,v) = L(rn0, p)|W(( = Wo(r).
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In their treatment of a free electron gas, Lindhard and Winther7’ 
showed that L can be expanded in powers of (vp/v)2, vF being the velocity 
of an electron at the Fermi surface. It turned out that for a gas with plasma 
frequency co0 and average kinetic energy the first correction term 
to the asymptotic formula

2m<?
= log- -, (10)

fico0
was given by

(H)

Moreover, Fano and Turner36' found this sort of expression to be of 
general validity in the atomic case (with being the average over 
both coordinate and momentum space). As pointed out by Lindhard and 
Winther7’, it would therefore seem natural to put

L(r,p) = log
2nw2 \

|/27ico0(r)/
<^>(r)
nw2/2 (12)

for the “outer” electrons. Here, the average kinetic energy <71)(^) of a unit 
volume at a distance r from the nucleus should, as always in a statistical 
description of the atom, be obtained from q(t) by means of the formula

<T>(r> -
5 2 m (13)

The behaviour of an electron gas is well described by a free particle 
model only at high densities7’, more specifically, when /2 1, / being
defined by

(14)

The Lenz-Jensen model of the atom8’ shows that, when Z2 = 10, /2(r) is 
less than 1 for 97 °/o of the electrons (yF and thus % now being functions 
of r), and for higher values of Z2 the situation is even better. A typical order 
of magnitude in the electron cloud is /2(r) ~ 10_1 —10-2.

Let us try to find a reasonable expression for the stopping contribution 
from the inner electrons of an atom. From the (k, co/Zc)-diagrams of ref. 7 
(Figs. 1 and 3) it is seen that for sufficiently large v the decisive aspect is 
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that for k -> oo (close collisions with single electrons), and k -> 0 (distant 
collisions) the oscillator strength is contained in a strip around the line 
oj/k = hk/2m and in a resonance curve corresponding to el(k, co) = 0, 
respectively. The distribution for intermediate values of k is not important 
as long as all the oscillator strength corresponding to a fixed value of k 
can be assumed to be below the line œ/k = v.

However, in case the velocity of the incoming particle is small compared 
to orbital velocities of atomic electrons, this situation is changed fundamen­
tally. Now it will not be sufficient to know the distribution of oscillator 
strength in asymptotic limits, and the oscillator strength will not be col­
lected in resonance curves (ref. 7, Fig. 1). On the one hand, it seems dif­
ficult to tell exactly how the distribution is shifted when free electrons are 
replaced by bound ones, but, on the other hand, there is no evidence of 
systematic shifts of the kind appearing for large v. The latter shifts, which 
correspond to changes in the resonance frequencies, should be accounted 
for by the introduction of the factor y ~ |/2 in (9). Furthermore, the con­
tribution to total stopping from inner electrons is known to be small, cf. 
also § 3. We can therefore probably give a fair account of the slowing-down 
due to inner electrons by just taking over the expression for the stopping 
of a slow particle in a free electron gas. Thus, defining /2(r) as in (14), we 
put up the following formula for L(r, n) (ref. 7, formulae (12) and (15)):

L(r,p) =

<D('-)

nw2/2
if > 0 (a)

otherwise (b).
(15)

Fig. 1 contains a reproduction of Fig. 5 in ref. 7, showing L as a function of 
y = 2nw2/liœ0 for two gas densities, /2 = 0.1 and /2 = 0.01. Here, the scale 
at the left-hand side should be used. The full drawn and dashed curves 
refer to numerical calculations and asymptotic expressions, respectively. 
With the scale to the right, the upper dashed and the dot-and-dash curves 
represent (a) and (b) of (15) at the same constant values of /2. Il is noted 
that (b) is the result of an approximation which for high densities does 
not differ much from the one given in ref. 7, formula (15).

In connection with Fig. 1, two remarks should be made. First, the pas­
sage from (a) to (b) in (15) ought to occur at a value of r, where <71)(7') ~ 
1/2 mu2. This is seen to be fulfilled. Second, it would have been preferable
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Figure 1. For explanation cf. text.

to avoid the discontinuity in L(r, i>), but it seemed difficult to find a simple 
analytic expression connecting (a) and (b) in a smooth manner. It will be 
shown later, however, that the discontinuity is of only little importance for 
the results of the calculations.

With L(r, u) given by (15) the similarity as expressed by L = L(x) is 
lost, even if ^>(r) is taken from a Thomas-Fermi model. However, as a 
function of (.r, Z2) the Z2-dependence of L must still be only weak.

From the general discussion of oscillator strengths given at the beginning 
of this chapter it is to be expected that the detailed distribution of the 
outermost electrons is essential for the calculation of J0-values. That this is 
so indeed, can be demonstrated by an example: Using a tabulated9) Hartrce- 
Fock distribution for C(Z2 = 6) Io was determined to 11.43 eV. By cal­
culating the volume per atom in amorphous carbon it was found that 0.42 
of the six electrons (7%) were situated outside this volume. Smearing out 
these 0.42 electrons equally over the accessible space, one altered Zo to 
13.75 eV-a change of 20%.

In order to avoid the large dependence of the calculated quantity on the 
details in the outermost part of the electron cloud, it was decided to look 
at the function C/Z2 defined by

N- Z2 log
C(.r,Z2)l

^2 J a = v^2) (16)
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rather than at L(x, Z2). This seems to be the most direct way of comparing 
with experiments and thereby obtaining information about the applicability 
of the Lindhard-ScharlT ideas Io such detailed calculations.

The conventional term “shell correction” for is somewhat mis­
leading in the present treatment, but will be used, nevertheless.

Before making comparisons with experimental material one question 
should be considered. The present procedure rests upon the outcome of a 
perturbation calculation for a free electron gas. To what extent can a per­
turbation treatment be used in our case? The electron cloud was divided 
into two parts: a) “outer” electrons corresponding to rF(r), and 
b) “inner” electrons corresponding to i> ~ oF(r). Case a) should be tractable 
by (quantum mechanical) perturbation theory for x > 1, where3a’10)

hv ’ (17)

and for case b) a perturbation calculation can be shown to be valid for 
comparatively high gas densities—more specifically, if p0 • Z3/3 pp(r) 
(Lindhard). For protons, the two requirements are satisfied for v ~ 2p0, 
i.e. for energies down to ~ 100 keV. Although depending on the target 
material, 100 keV gives the order of magnitude for the energy at which the 
maximum in stopping power appears.

It might be mentioned that calculations for proton energies below ~ 500 keV 
have often been considered to be doubtful due to capture and loss of electrons. 
However, within a self-consistent dielectric treatment of a Fermi gas the electrons 
provide a time-independent screening of an incoming positive particle, the screening 
distance being generally a function of Zlfv and the density of the gas. Therefore, 
such a description includes a balance between capture and loss. The special case 
of a linear treatment corresponds to the situation where the screening distance 
does not depend on Zt.

We now seem justified in comparing theoretical and experimental data 
down to æ ~ 111-1, at least for the heavier elements.

§ 3. Discussion of Results
Shell corrections and /-values

Let us now turn to the C/Za-curves that have been calculated by means 
of the procedure described above*.  In Fig. 2 comparison is made between

* The I.enz-Jensen calculations were performed on the GIER computer at the University 
of Aarhus. As for the Hartree curves, the calculations were done by hand, but were much re­
duced through the use of unpublished numerical results from the original work by Lindhard 
and Scharff.
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calculated values. The error bars show the approximate influence of a 10°/0 (1 %) uncertainty 
in the applied stopping power.

experimentally determined and computed shell corrections, the latter having 
been obtained by applying a Thomas-Fermi type of expression for Q(r), 
namely the analytic first order Lenz-Jensen distribution function. The 
empirical curves were drawn by introducing experimental values for 
(-dE/dx)/1’12) and / into (16), the /-values being those recommended in 
ref. 3 (/ and not /adj of ref. 3 should be used).

Two features are seen to be reproduced correctly by the computed shell 
corrections :

1) the general shape of the curves,
2) the order of magnitude of C/Z2.

Furthermore, it seems to be in agreement with experiments that C/Z2 should 
increase with increasing Z2 (Fig. 2 and ref. 3c). However, a detailed check 
on this point is difficult because of the significant experimental uncertainties, 
especially as regards the /-values (cf. below).

Low energies

Although the difference between the calculated shell corrections for 
Al and Au, taken relatively to L, i.e. A(C/Z^/L, amounts to about the same
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X
Figure 3. Shell correction curves determined from Bichsel’s stopping power data and experi­
mental 7-values. The error bar shows the approximate influence of a 10 °/0 uncertainty in the 

applied stopping power.

at x = 0.1 and x = 1 (8-10%), the small difference on an absolute scale 
between the various C/Z2-curves at low energies seems to be of some im­
portance. Suppose that one wants to extract the /-value of a material from 
some experimentally determined stopping power and a theoretical value for 
the corresponding shell correction. The formula to be used is

/ 2tïïUa\ C
%)exp = log æ + !°g ( jiY ] - Y <1 8)

where L(x,Z2)exp is found by means of (1) in an obvious way.
If L has been measured with an uncertainty AL and C/Z2 is given with 

an error d(C/Z2) one has for the maximum possible error AI in I:

Al
I (19)
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In a high energy experiment L is of order of 6-10. However, al x = 0.1 
the L-value will be at most 0.5, which means that an uncertainty of 10 °/o 
in the measured stopping power leads to an experimental uncertainty in I 
of only 5%. If can be calculated in such a way that zJ(C/Z2) ~ 0.10, 
say, the extracted /-value will be determined with a total uncertainty not 
exceeding 15°/o.

Admittedly, it is most pronounced for the theoretical shell corrections 
that the curves approach each other at low x-values (Figs. 2 and 3). Yet, 
it must be remembered that, firstly, the stated uncertainty of 1-10% in the 
stopping powers reported by Biens el11* is of some importance for the 
drawing of the empirical curves, and, secondly, a change of 1 % in the 
applied experimental / causes a parallel shift of the corresponding curve 
of 0.01. Therefore, even if it is true that the shell correction depends in an 
only weak manner on Z2 at small .r-values, it would probably be very 
difficult to point out such an effect from existing experimental material 
alone, i.e. from stopping power data at low energies and /-values determined 
at high energies.

Table 1.
Lenz-Jensen calculation for Ag. ZJ: number of “inner electrons”. L* : contribution to L from 

“inner electrons”.

X z?/z2 L* L*/L

8.04 0.07 0.014 0.00

3.62 0.16 0.028 0.01

1.055 0.40 0.054 0.04

0.613 0.52 0.058 0.06

0.376 0.63 0.059 0.08

0.235 0.72 0.055 0.10

0.095 0.85 0.038 0.14

Before giving any examples of /-values obtained along the lines suggested 
above, let us make a couple of further remarks concerning the reliability 
of the method used for calculating shell corrections. One difficulty might 
seem to be that a large portion of the electron cloud is considered as belonging 
to “inner” electrons at small .r-values, and the contribution from an inner 
electron was only taken care of through a rough estimate. This problem is, 
however, not very serious because, as shown in Table 1, the role played 
by these electrons in the slowing-down is very limited, both relatively and
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absolutely. Morcover, Table 1 makes it very plausible that the discontinuity 
in the expression for L(r, i>) cannot be of much importance. As a matter of 
fact, an estimate shows that by changing L(r, i?) in such a way that (a) 
and (b) in (15) become smoothly connected, one changes CfZ2 by less 
than 0.01-0.02.

The calculated shell corrections should thus depend only weakly on the 
detailed distribution of both inner and outermost electrons, but this is, in 
fact, what justifies the use of a statistical method. Especially the introduction 
of Hartree models for the electron clouds should for heavier materials only 
lead to slight deviations (oscillations) from the Lenz-Jensen results (Fig. 4).

If a common C/Z2-curve can be drawn in a certain x-interval for two 
materials denoted by indices A and B, the corresponding L-values will only 
differ by a constant reflecting the difference in I for the two substances. 
More specifically, the following relation should apply:

= Ab CXP (^b ~ ^a)- (-P)
ZB

To test formula (20) it was decided to take Al as a standard, because this 
material seems to be the one with the experimentally best known I. A value
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Table 2.
Comparison of calculated and empirical /-values. In several cases ref. 3 only gives 7 . (7 - 7)
was then found by interpolation in the table on p. 101 of the same publication. Bichsel does 
not consider his value for Ag to be reliable. Fano has taken his value for Kr from Bichsel.

Ele­
ment z, X

7 (eV)expv 7 
Fano

I (eV) exp' 7
Bichsel

7 (eV)expv 7 
Barkas &

Berger
eXP(LB -

C........ 6 0.667 70± 8 81 78 0.925

Ne .... 10 0.400 144 ± 9 131 1.146

A........ 18 0.308 157±15 190 184
212

210 0.696

Ni .... 28 0.308 296 ± 23 307.5
310

302 0.844

Cu .... 29 0.308 319 ±23 313 326 312 0.878

Kr . . . . 36 0.308 355 ±30 360 360
380

377 0.787

Ag . . . . 47 0.340 433 ±42 471 447.5 480 0.736

Sn .... 50 0.320 460 ± 43 507 0.733

Xe . . . . 54 0.308 462 ±45 543 0.683

Au .... 79 0.308 779 ± 66 761 768 0.787

Pb . . . . 82 0.308 769 ±69 788 795 0.748

of 163 eV was taken from ref. 3. The stopping power measurements used for 
the determination of L were those cited by Bichsel11), the .r-value always 
being the lowest one common to Al and the medium under consideration. 
However, measurements below 100 keV were not taken into account.

Table 2 shows the results from such a calculation (/cal) together with 
empirical /-values. The uncertainty in /cal corresponds to the stated maximum 
experimental error in the stopping power for the substance investigated 
(10%). As already mentioned, the experimental /-values are often uncertain, 
a fact clearly demonstrated by the different numbers given for the same 
material by the authors of ref. 3.

For an account of how the experimental mean excitation energies were 
found, the reader is referred to ref. 3. Here, we merely note that the numbers 
given by Barkas and Berger3ü) for Z2 > 13 were determined by means 
of a semi-empirical formula for IfZ2, giving very closely the values quoted 
by Fano3c) for Al, Cu, and Pb. Yet, in some cases, e.g. for the noble gases, 
an interpolation procedure of this kind may not be very reliable, since the 
distribution of the outermost electrons can be rather special. The last column
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power (similar for Fig. 5 b).

of Table 2 exhibits the factors exp(LB —LA) reflecting the rather large var­
iations of I)Z2.

The agreement with the /-values suggested in ref. 3 is rather good con­
sidering the experimental uncertainties. It seems that these have not been 
exaggerated by the authors. For instance, the stopping powers for protons 
in carbon measured recently by Sautter and Zimmermann13* with a re­
ported accuracy of ± 1.7— ± 2.30/0, are lying from 11.4% to 15.5°/0 below 
Bichsel’s values in the region of overlap (100-300 keV).

From the theoretical curves C/Z2 was found to increase for increasing Z2.
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Thus, choosing an experimental shell correction curve for Al as a common 
standard for all materials, one should for Z2 > 13 have underestimated 
C/Z2 and thereby overestimated I, this being the more serious the larger 
the used x. However, in Table 2 the calculated Z-values arc not systematically 
larger than the corresponding experimental ones. Yet, although Zexp =163 eV 
for Al may be determined with considerable accuracy, the stopping power 
measurements at low energies are probably not much better for Al than for 
most other metals. In this context it may be noted that a 10% change in 
the stopping power for Al at x = 0.308 (ZTproton = 100 keV) would corre­
spond to a systematic change in the calculated Z-values of ±6%.
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Intermediate energies

The above discussion of the region of small .r-values originated in a 
general feature of the calculated shell corrections. A direct comparison 
between theory and experiments appeared to be difficult.

At intermediate energies the experimental situation is much more satis­
fying, mainly due to a new technique for measuring stopping powers de­
veloped by Andersen, Garfinkel, Hanke, Sørensen, and Vajda12>. Ac­
cording to these authors, the data obtained are reliable to within ±O.3°/o. 
This means that a detailed comparison between, at least, the shapes of the 
experimental and theoretical shell correction curves can be made for the 
energies investigated (2 12 MeV protons).

Figs. 5a and 5b show a plot of log/ + C/Z2 against .r for Al and Au. 
For both elements, the second /-value used for the calculated curve has 
been chosen to avoid a parallel shift between corresponding theoretical and 
empirical curves rather than being in close agreement with current estimates. 
It is seen that the location of the maximum is accounted for fairly well, but 
there is a significant difference in the trend towards it, the calculated curves 
being much too steep.

It is not at all evident if this discrepancy can be removed within the 
model by some appropriate change, but it might be in place to note that 
the .r-values in question correspond to the “bulk” of electrons passing from 
being counted as “outer” to being counted as “inner” electrons, i.e. the 
maximum of the function 4:zir2@(r) appears around the radius where one 
goes from (a) to (b) in (15).

§ 4. Concluding Remarks

The purpose of the present paper may be said to have been twofold. 
Firstly, from a theoretical point of view it seemed desirable to investigate 
the applicability of the Lindhard-Scharff ideas in a detailed evaluation of 
slowing-down problems, and, secondly, even if the results of the calculations 
should not be in very accurate quantitative agreement with experiments, it 
might well be that such a treatment of Thomas-Fermi type could give some 
information as to the over all dependence of fundamental quantities on 
the atomic number Z2. As discussed, such information is not always easy 
to extract from experimental material alone.

Keeping in mind the detailed nature of any theoretical description trying 
to account for shell corrections, the results obtained must be interpreted as 
supporting the basic assumptions of the method. Furthermore, the expression
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mental points correspond to a change of I from 326 eV to 312 eV (cf. Table 2).

chosen for L(r, v) probably cannot be much in error. An indication of this 
is provided by a comparison of the present shell corrections with the (uni­
versal) Lenz-Jensen curve from the model used by Lindhard and Scharff 
(Fig- 6)-
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